4730

Mark Scheme

June 2009

4730 Mechanics 3

1 i	Horiz. comp. of vel. after impact is 4ms ⁻¹	B1	May be implied
	Vert. comp. of vel. after impact is $\sqrt{5^2 - 4^2} = 3 \text{ms}^{-1}$	B1	AG
	$\sqrt{5^2 - 4^2} = 500$ Coefficient of restitution is 0.5	B1	From $e = 3/6$
		[3]	
ii	Direction is vertically upwards	B1	
	Change of velocity is 3 – (-6) Impulse has magnitude 2.7Ns	M1 A1	From $m(\Delta v) = 0.3 \times 9$
	Impulse hus mugintude 2.7135	[3]	$10 \text{ mm}(\Delta v) = 0.575$
2 i	Horizontal component is 14N	B1	
		M1	For taking moments for <i>AB</i> about <i>A</i> or <i>B</i> or the midpoint of <i>AB</i>
	$80 \times 1.5 = 14 \times 1.5 + 3Y$ or	IVI I	of the hildpoint of AB
	$3(80 - Y) = 80 \times 1.5 + 14 \times 1.5$ or		
	$1.5(80 - Y) = 14 \times 0.75 + 14 \times 0.75 + 1.5Y$ Vertical component is 33N upwards	A1 A1	AG
	vertical component is 3510 upwards	[4]	AU
ii	Horizontal component at <i>C</i> is 14N [Vertical component at <i>C</i> is	B1 M1	May be implied for using $R^2 = H^2 + V^2$
	$(\pm)\sqrt{50^2 - 14^2}$]	DM1	For resolving forces at <i>C</i> vertically
	$[W = (\pm)48 - 33]$	A1	
	Weight is 15N	[4]	
3 i		M1	For using the p.c.mmtm parallel to l.o.c.
	$4 \times 3\cos 60^{\circ} - 2 \times 3\cos 60^{\circ} = 2b$ $b = 1.5$	A1 A1	
	j component of vel. of $B = (-)3\sin 60^{\circ}$	B1ft	ft consistent sin/cos mix
	$[v^2 = \hat{b}^2 + (-3\sin 60^\circ)^2]$	M1	For using $v^2 = b^2 + v_y^2$
	Speed (3ms ⁻¹) is unchanged	A1ft	AG ft - allow same answer following
	[Angle with l.o.c. = $\tan^{-1}(3\sin 60^{\circ}/1.5)$]	M1	consistent sin/cos mix.
	Angle is 60°.	A1ft [8]	For using angle = $\tan^{-1}(\pm v_y/v_x)$ ft consistent sin/cos mix
		[0]	
ii	$[e(3\cos 60^\circ + 3\cos 60^\circ) = 1.5]$	M1	For using NEL
	Coefficient is 0.5	A1ft [2]	ft - allow same answer following consistent sin/cos mix throughout.
		[2]	

physicsandmathstutor.com

4730

Mark Scheme

June 2009

4 i	$F - 0.25v^{2} = 120v(dv/dx)$ $F = 8000/v$ $[32000 - v^{3} = 480v^{2}(dv/dx)]$ $\frac{480v^{2}}{v^{3} - 32000} \frac{dv}{dx} = -1$	M1 A1 B1 M1 A1 [5]	For using Newton's second law with a = v(dv/dx) For substituting for <i>F</i> and multiplying throughout by 4v (or equivalent) AG
ii	$\int \frac{480v^2}{v^3 - 32000} dv = -\int dx$ 160 ln(v ³ - 32000) = -x (+A) 160 ln(v ³ - 32000) = -x + 160 ln32000 or 160 ln(v ³ - 32000) - 160 ln32000 = -500 (v ³ - 32000)/32000 = e ^{-x/160} Speed of <i>m/c</i> is 32.2ms ⁻¹	M1 A1 M1 A1ft B1ft B1 [6]	For separating variables and integrating For using $v(0) = 40$ or $[160 \ln(v^3 - 32000)]^{v}_{40} = [-x]^{500}_{0}$ ft where factor 160 is incorrect but +ve, Implied by $(v^3 - 32000)/32000 = e^{-3.125}$ (or = 0.0439). ft where factor 160 is incorrect but +ve, or for an incorrect non- zero value of <i>A</i>
5 i	$x_{\text{max}} = \sqrt{1.5^2 + 2^2} - 1.5 (= 1)$ [$T_{\text{max}} = 18 \times 1/1.5$] Maximum tension is 12N	B1 M1 A1 [3]	For using $T = \lambda x/L$
ii	(a) Gain in EE = $2[18(1^2 - 0.2^2)]/(2 \times 1.5)$ (11.52) Loss in GPE = 2.8mg (27.44m) [$2.8m \times 9.8 = 11.52$] m = 0.42 (b) $\frac{1}{2}mv^2 = mg(0.8) + 2 \times 18 \times 0.2^2/(2 \times 1.5)$ or $\frac{1}{2}mv^2 = 2 \times 18 \times 1^2/(2 \times 1.5) - mg(2)$	M1 A1 B1 M1 A1 [5] M1 A1ft	For using $EE = \lambda x^2/2L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point For using the p.c.energy AG For using the p.c.energy KE, PE & EE must all be represented ft only when just one string is considered throughout in evaluating EE
	Speed at M is 4.24ms ⁻¹	A1ft [3]	ft only for answer 4.10 following consideration of only one string

physicsandmathstutor.com

4730

Mark Scheme

June 2009

6 i	$\begin{bmatrix} -mg \sin \theta = m L(d^2 \theta / dt^2) \\ d^2 \theta / dt^2 = -(g/L) \sin \theta \end{bmatrix}$	M1 A1 [2]	For using Newton's second law tangentially with $a = Ld^2 \theta / dt^2$ AG
ii	$\begin{bmatrix} d^2 \theta / dt^2 = -(g/L) \ \theta \end{bmatrix}$ $d^2 \theta / dt^2 = -(g/L) \ \theta \implies \text{motion is SH}$	M1 A1 [2]	For using $\sin \theta \approx \theta$ because θ is small ($\theta_{max} = 0.05$) AG
iii	$[4\pi/7 = 2\pi/\sqrt{9.8/L}]$ L = 0.8	M1 A1 [2]	For using $T = 2\pi/n$ where $-n^2$ is coefficient of θ
iv	$[\theta = 0.05\cos 3.5 \times 0.7]$ $\theta = -0.0385$ t = 1.10 (accept 1.1 or 1.09)	M1 A1ft M1 A1ft [4]	For using $\theta = \theta_0 \cos nt \{ \theta = \theta_0 \sin nt $ not accepted unless the <i>t</i> is reconciled with the <i>t</i> as defined in the question} ft incorrect $L \{ \theta = 0.05 \cos[4.9/(5L)^{\frac{1}{2}}] \}$ For attempting to find 3.5t ($\pi < 3.5t < 1.5\pi$) for which 0.05cos3.5 <i>t</i> = answer found for θ or for using $3.5(t_1 + t_2) = 2\pi$ ft incorrect $L \{ t = [2\pi (5L)^{\frac{1}{2}}]/7 - 0.7 \}$
v	$\dot{\theta}^2 = 3.5^2 (0.05^2 - (-0.0385)^2) \text{ or}$ $\dot{\theta}^2 = -3.5 \times 0.05 \sin (3.5 \times 0.7) (\dot{\theta}^2 = -0.1116)$ Speed is 0.0893 ms^{-1} (Accept answers correct to 2 s.f.)	M1 A1ft A1ft [3]	For using $\dot{\theta}^2 = n^2(\theta_o^2 - \theta^2)$ or $\dot{\theta} = -n \ \theta_o \sin nt$ {also allow $\dot{\theta} =$ $n \ \theta_o \cos nt$ if $\theta = \theta_o \sin nt$ has been used previously} ft incorrect θ with or without 3.5 represented by $(g/L)^{\frac{1}{2}}$ using incorrect <i>L</i> in (iii) or for $\dot{\theta} = 3.5 \times 0.05 \cos(3.5 \times 0.7)$ following previous use of $\theta = \theta_o \sin nt$ ft incorrect <i>L</i> (<i>L</i> ×0.089287/0.8 with n = 3.5 used or from $ 0.35\sin\{4.9/[5L]^{\frac{1}{2}}\}/[5L]^{\frac{1}{2}} $ SR for candidates who use $\dot{\theta}$ as <i>v</i> . (Max 1/3) For $v = \pm 0.112$ B1

physicsandmathstutor.com

4730

Mark Scheme

June 2009

7 i	Gain in PE = $mga(1 - \cos\theta)$	B1	
	$[\frac{1}{2}mu^{2} - \frac{1}{2}mv^{2} = mga(1 - \cos\theta)]$	M1	For using KE loss = PE gain
	$v^2 = u^2 - 2ga(1 - \cos\theta)$	A1	
	$[R - mg \cos \theta = m(\text{accel.})]$		
	$R = mv^2/a + mg\cos\theta$	M1	For using Newton's second law radially
		A1	
	$[R = m\{u^2 - 2ga(1 - \cos\theta)\}/a + mg\cos\theta]$	M1	For substituting for v^2
	$R = mu^2/a + mg(3\cos\theta - 2)$	A1	AG
		[7]	
ii	$[0 = mu^2/a - 5mg]$	M1	For substituting $R = 0$ and $\theta = 180^{\circ}$
	$u^2 = 5ag$	Al	$1 \text{ or substituting } \mathbf{K} = 0$ and $0 = 100$
	$[v^{2} = 5ag - 4ag]$ Least value of v^{2} is ag	M1 A1 [4]	For substituting for u^2 (= 5 <i>ag</i>) and θ = 180° in v^2 (expression found in (i)) { but M0 if $v = 0$ has been used to find u^2 } AG
iii	$[0 = u^{2} - 2ga(1 - \sqrt{3}/2)]$ $u^{2} = ag(2 - \sqrt{3})$	M1	For substituting $v^2 = 0$ and $\theta = \pi/6$ in v^2 (expression found in (i))
	$u^2 = ag(2 - \sqrt{3})$	A1 [2]	Accept $u^2 = 2ag(1 - \cos\pi/6)$